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Introduction 
This whitepaper introduces the basic ideas behind hash-based signatures (HBS), discusses their 

suitability to use in a firmware- or code-signing application, and describes some of their 

limitations in a real-world setting in regards to disaster recovery and survivability.  All of this is in 

preparation for the introduction of the proposed use of sectorization as a means of addressing 

some of HBS’ shortcomings. 

We’ve tried to keep things as simple as possible by simplifying our examples, deferring to other 

excellent articles for additional details related to HBS, and choosing to limit descriptions to a 

particular choice of HBS, but all of the concepts described herein are generic enough that they 

can be applied to other, potentially more complex HBS instantiations. We’ve also added a 

number of asides that attempt to provide a bit more detail regarding some aspects of the 

discussion which will (hopefully!) assist the curious reader. In addition, we’re happy to address 

any questions the reader may have via e-mail using the author’s address: jimg@crypto4a.com. 

Hash Based Signature (HBS) 101 
In 1979 Ralph Merkle submitted a Ph.D. dissertation [1] in which he described a means to 

efficiently generate certified signatures using one-way hash functions as the underlying 

mechanism. The basic idea had already been invented by Leslie Lamport, but that original 

solution required a very large private AND public key be generated and published for EVERY 

message that was to be signed. Merkle’s principal contribution to HBS was the Merkle tree which 

provided an efficient means to bind together a large number of one-time signatures under a 

single public key, which greatly improved the usability of HBS. 

Merkle’s approach utilizes 2n one-time signature (OTS) instances whose public keys are hashed 

together via a binary tree to generate a single public key that binds all of the OTS instances 

together, thereby allowing you to generate 2n signatures from a single public key. This is then 

combined with a pseudo-random method for generating the private keys of each of the OTS 

signatures from a single reasonable-length secret seed value (e.g., 32 bytes), to yield a reasonably 

compact public/private keypair, and a many-time signature (MTS) scheme. Signatures consist of 

the OTS signature on the message, combined with the information necessary to re-compute the 

public key which is the sequence of values required to climb the binary tree from the OTS instance 

at the leaf of the tree, all the way up to the root of the tree (i.e., the public key). This is shown in 

a greatly simplified fashion in Figure 1. 
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Figure 1. Greatly simplified HBS signing operation 

 

Unfortunately, this introduces some constraints on practical implementations. One of these 

constraints is related to performance. Computing the public key requires you to compute 2n 

OTS public keys, and then combine those results via a n-level binary tree which requires you to 

compute 2n – 1 node values. This can quickly prove prohibitively expensive as n increases. 

Another important constraint is related to security. If you were ever to re-use an OTS instance 

then you greatly increase the risk of having an adversary generate undetectable forgeries from 

previously-generated signatures. Each instance corresponds to one of the 2n leaves of the 

Merkle tree so we need to track which instances have been used already. We track this using a 

monotonically increasing counter that counts up from 0 to 2n - 1, incrementing after each OTS is 

generated. This count value (i.e., leaf number) is referred to as the state of the HBS, and its 

management is absolutely crucial to ensuring the security of the HBS scheme. 

Fast forward almost 40 years and HBS has evolved into a mature cryptographic mechanism that 

utilizes optimized OTS schemes and innovative hierarchical hyper-tree structures to address the 

computational complexity of computing signatures and HBS public keys in a timely fashion. As an 

added bonus, HBS are considered to be safe from the threat posed by quantum computers, which 

will completely undermine the security of traditional RSA/ECDSA-based certified signature 

schemes. Hence, there is a lot of interest in HBS at this time for certain use cases that it is well 



  C4A-210-0002-20052020 

 

suited for (e.g., firmware signing). In addition, work has been done to create stateless HBS 

schemes (e.g., SPHINCS [2] and its successor SPHINCS+ [3]) that employ a few-time signature 

(FTS) scheme to provide resiliency against the state reuse problem, effectively rendering it a non-

issue, though at the cost of additional complexity and signature size. This whitepaper however is 

focused only on the stateful variants. 

For those readers who want to know more regarding HBS then I definitely recommend you check 

out Adam Langley’s explanation of HBS from his online blog [4] as he does an excellent job filling 

in the details in regards to what HBS is and how it is used. More curious (and brave!) readers can 

even go so far as to review the two primary stateful HBS schemes’ informational RFCs ( [5], [6]) 

which serve as the definitive references for these variants. 

In the interest of simplicity, the remainder of this whitepaper will focus on the LMS-HBS method 

defined in RFC 8554 [5], though everything discussed should be realizable using XMSS [6] as well. 

The Winternitz One Time Signature (WOTS) Scheme 
All HBS methods rely on the use of OTS schemes, and one particularly popular OTS is the 

Winternitz OTS (WOTS) which is used in one form or another for both LMS-HBS [5] and XMSS [6]. 

At its heart, the WOTS scheme utilizes hash chains to compute a digital signature by chunking a 

hash of a message (plus some additional information that we’re ignoring here for simplicity’s 

sake) that is to be signed into u digits, each of length w bits (w = Winternitz parameter which is 

essentially the radix of the encoding). Each of those digits (digiti) is then used to compute the 

length of a hash chain using the formula leni = digiti, where each leni determines how many times 

element xi of the WOTS private key is iteratively hashed to yield the WOTS signature element yi.  

Note that the WOTS public key elements (zi) are computed using the same iterative hashing 

approach with a fixed chain length of 2w – 1 (i.e., 𝑧𝑖 = 𝐻2𝑤−1(𝑥𝑖)) for all elements of the WOTS 

private key. These zi are then concatenated and hashed together to yield the WOTS public key 

value that is used in the WOTS signature verification. A simplified version of the calculation of 

the WOTS public key is shown in Figure 2. 
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Figure 2. Simplified WOTS Public Key Generation 

 

Unfortunately, this approach is prone to forgery in that given some yi, an attacker can easily 

perform additional hash iterations to yield yi’ ≠ yi which appears valid, but maps to a different 

leni, and hence digiti. WOTS mitigates this attack vector by computing a checksum across the u 

digits using the formula: 

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 =  ∑ 2𝑤 − 1 − 𝑑𝑖𝑔𝑖𝑡𝑖

𝑢−1

𝑖=0

 

The checksum is then encoded as v additional radix-w digits that get signed as well, giving you p 

= u + v digits in all that need to be encoded/signed. Hence, an attacker that performed additional 

hash iterations would effectively be increasing the value of some digiti, which in turn would 

reduce one or more checksum digits, thereby requiring them to generate a result from a hash 

chain with less iterations. This is equivalent to them being able to find a pre-image of a 

cryptographically secure hash function (e.g., SHA256) which is thought to be computationally 

infeasible at this time. A simplified version of the calculation of the WOTS signature is shown in 

Figure 3. 
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Figure 3. Simplified WOTS Signature Generation 

 

Verification of a WOTS scheme repeats the checksum computation and encoding of the resulting 

concatenated message hash and checksum into p = u + v digits (digiti). However, these digits are 

now used to complete the hash chains by performing leni = 2w – 1 – digiti iterations on the 𝑦̂𝑖 

values found in the WOTS signature (the hat character represents the fact the values may differ 

from the values computed during signature generation). If the digiti values are the same as those 

used during the signing process, then you are essentially re-computing the public key 

components zi as: 

𝐻2𝑤−1−𝑑𝑖𝑔𝑖𝑡𝑖(𝑦𝑖) =  𝐻2𝑤−1−𝑑𝑖𝑔𝑖𝑡𝑖 (𝐻𝑑𝑖𝑔𝑖𝑡𝑖 (𝑥𝑖)) = 𝐻2𝑤−1(𝑥𝑖) = 𝑧𝑖  

If digiti has been modified in some way then 𝑦̂𝑖 ≠ 𝑦𝑖 and you will be computing the 𝑧̂𝑖 ≠ 𝑧𝑖, 

leading to a different concatenated hash value, and a simple comparison to the WOTS public key 
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value will reveal the discrepancy so that you can reject the signature. A simplified version of the 

calculation of the WOTS signature is shown in Figure 4. 

 
Figure 4. Simplified WOTS Signature Verification 

Suitable Use Cases 
HBS isn’t a panacea. It has a number of limitations that make it ill-suited to use as a generic digital 

signature mechanism that can be a drop-in replacement for today’s RSA- and ECDSA-based digital 

signature mechanisms. First and foremost is the stateful nature of HBS, which we have already 

touched on in our brief introduction to HBS, and which we will discuss further shortly when we 

look at the difficulties addressing real world requirements such as Disaster Recovery (DR). 

Another big constraint on HBS is the fact we need to know how many signatures will be required 

at the time of key generation, which may be impossible to do. Estimating conservatively (i.e., 

over-estimating to be safe) leads to increased signature sizes for a mechanism that already has 

relatively large signatures. Hence, care must be taken to identify appropriate use cases where 

HBS makes sense. 
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One such use case is firmware signing where we can 

(relatively) accurately predict the total number of 

signatures required based on the expected update 

schedule and lifetime of the firmware we’re trying to 

protect, and for which a few kB’s of signature are 

insignificant compared to the MB of firmware we’re 

attaching the signature to. In addition, the quantum 

safe nature of HBS ensures that when you want to 

update your devices’ firmware to include new 

features/functions (e.g., in response to NIST’s 

designation of quantum-safe signature mechanisms 

in the 2021-2022 timeframes), it can be done so in a 

safe and secure way, even in the presence of 

adversaries in possession of a quantum computer, 

which addresses the bootstrapping problem present 

on many companies’ plans to firmware update their 

way out of the quantum computing dilemma. 

Another such use case are extremely long-lived root 

keys where we need to be able to generate 

signatures over 20+ year lifetimes, albeit on a 

relatively infrequent basis that can be reasonably 

estimated to ensure we can generate a suitable HBS 

tree structure. 

 

Durability Protection and 

Disaster Recovery 
Real-world systems require the ability to deal with 

unexpected events that effectively remove devices 

from operation, rendering its resources and services 

unavailable. Sometimes these events lead to 

temporary outages (e.g., local power outage or 

network failure), and sometimes they lead to more 

permanent outages (e.g., a fire destroys the device, 

or the device simply permanently fails). Typically, a 

PKI provider will maintain a backup device, which 

contains the same private keys as the primary device, in a geographically distinct location to 

provide survivability to localized failures such as network/power outages. When the primary 

device goes down the backup device can be brought online to fill in until (if!) the primary device 

The bootstrapping dilemma 

A number of companies claim that they will 

just utilize their built-in firmware update 

procedure to introduce quantum-safe 

cryptographic primitives if and when they are 

standardized, and when they become 

necessary (i.e., when quantum-based attacks 

become a reality). Setting aside the record-

and-decrypt-later aspect of things, and 

focusing just on the authentication aspect, 

this introduces some troubling issues. First, 

how will we know that a quantum-based 

attack is possible? Given the expected 

capabilities of a quantum-enabled adversary, 

and the level of resources required to develop 

that capability, it is very likely its existence will 

never be avowed until well after it is 

achieved, much like the Allies’ development 

of ULTRA during the Second World War, 

which didn’t come to light until more than 30 

years later. Hence, we will never likely know 

the precise timing of that event, so all 

firmware update contingencies based on non-

quantum safe authentication mechanisms are 

at risk, with that risk increasing the longer 

people choose to delay the switchover to 

quantum safe mechanisms. And once that 

capability is known to exist, its already too 

late. Any attempted firmware update from 

that moment onwards cannot be trusted as it 

may have been modified to introduce 

mechanisms to subvert any post-update 

authentication mechanisms since the 

update’s integrity can’t be guaranteed. So, in 

our opinion its best to act now to introduce 

proven, quantum-safe authentication 

mechanisms into the firmware update 

process as soon as possible, especially since 

well-suited options such as HBS already exist, 

and are standardized sufficiently for vendors 

to develop proprietary update mechanisms 

that don’t require interoperability. 
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can be restored/repaired. The goal is to do this in a manner that minimizes the downtime and 

impact on users. 

HBS throws a wrench in the works of traditional DR mechanisms as the HBS private keys are 

stateful, which means they are modified during each usage so any backup device’s copy of the 

private key needs to maintain coherency with the primary device’s private key so that it NEVER 

re-uses a prior private key state. If we can’t guarantee that behavior due to even a brief lack of 

synchronization, then the entire system is at risk of being compromised as attackers may have 

enough information to successfully forge messages! Indeed, even a single reuse can render the 

system compromised. 

Needless to say, this is a very difficult problem to mitigate using standard HBS mechanisms and 

techniques, which is why we’re proposing the sectorization concept as a means of effectively 

dealing with the limitations of stateful HBS in a DR-based scenario. 

Introducing Sectorization 
Sectorization is a means to partition the 2n signatures generated by an HBS into 2S 

cryptographically-isolated segments1 (each capable of generating 2n-S signatures) such that a 

device assigned sector i’s private key cannot generate valid signatures for sector j, and vice-versa, 

provided i ≠ j. Note that both sector’s utilize the same public key, so they are all part of the same 

signing authority, and in the hierarchical XMSSMT/HSS variants, they will share the same top-level 

tree identifiers too. This isolation is provided by using a more elaborate key generation 

mechanism that knows a priori how many sectors are to be generated, and then proceeds to 

generate unique sector seed2 values for each of the sectors using either an approved pseudo-

random generation method from a master seed value that mixes in the unique sector numbers, 

or by generating unique random sector seed values. In either case, the sector seed becomes the 

seed of the sector’s top-level tree3 , and the same top-level tree identifier is used for all sectors. 

Once that is done, it’s a simple matter to use each sector’s seed to generate that sector’s OTS 

private keys and public keys, and then combine those public key values together to ascend the 

top-level tree and generate the HBS public key. 

Where the sectorized approach differs from a conventional HBS is that we need to augment the 

private key to include the off-path information that will allow a verifier to ascend the tree from 

the root of their sector up to the root of the tree (i.e., HBS public key). This amounts to storing S 

 
1  Note that we are restricting ourselves to power-of-two sector counts that fit within the range of the top-level 

tree in order to simplify the explanation/discussion. There is no fundamental limitation on the total sector count, 
though a power of two greatly simplifies the implementation, as does ensuring the sectorization splitting all falls 
within the top-level tree. Examples where this is not the case are left as exercises for the reader! :-> 

2  Recall that seeds are used in the pseudo-random OTS private key value generation process such as that proposed 
in Appendix A of [5]. However, here we are using a unique seed per sector, potentially leading to multiple seeds 
per LMS tree, but this shouldn’t adversely affect the security of the scheme. 

3  Here we’re referring to a hypertree-based hierarchical scheme made up of multiple levels of trees, it is trivial to 
map this onto the non-hierarchical case. 
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node values in our 2S sector-based example. At this point the private key is complete and we can 

generate any HBS from within that sector4. If someone were to attempt to use a sector’s private 

key to generate a valid signature for another sector then they would not have the information 

they need to compute the required path information above the sector root since that was never 

recorded in their private key. In addition, the cryptographically-isolated sector seed values 

ensure they can’t feasibly guess the required seed value they’d need to be able to compute 

another sector’s root value by recomputing its leave’s OTS private key values. This is all 

summarized in the simple sectorization example shown in Figure 5. 

seed0,0

2h - S 2h - S 2h - S 2h - S

I0

seed0,1

I0

seed0,2

I0

seed0,3

I0

h

h – S

S = log2(numSectors) = 2

T1 = pubLms

T2 T3

T4 T5 T6 T7

Off-path info we need to store in sector s private key (SectorInfoi):

Sector 0: {T5, T3} so SectorInfo0 = {h, S, pubLms, I0, seed0,0, T5, T3}
Sector 1: {T4, T3} so SectorInfo1 = {h, S, pubLms, I0, seed0,1, T4, T3}
Sector 2: {T7, T2} so SectorInfo2 = {h, S, pubLms, I0, seed0,2, T7, T2}
Sector 3: {T6, T2} so SectorInfo3 = {h, S, pubLms, I0, seed0,3, T6, T2}

Pseudo-random seed/I generation:

seed0,0 = H( u128(0) || u32(0) || u16(D_TOPSEED) || u8(1) || masterSeed )
seed0,1 = H( u128(0) || u32(1) || u16(D_TOPSEED) || u8(1) || masterSeed )
seed0,2 = H( u128(0) || u32(2) || u16(D_TOPSEED) || u8(1) || masterSeed )
seed0,3 = H( u128(0) || u32(3) || u16(D_TOPSEED) || u8(1) || masterSeed )

          I0 = H( u128(0) || u32(0) || u16(D_TOPSEED) || u8(2) || masterSeed )

Sector 0 Sector 1 Sector 2 Sector 3

 
Figure 5. Simple Sectorization 

What this allows us to do is confidently generate a new multi-sector HBS scheme in a suitable 

hardware device (e.g., HSM), and then export the resulting sector private keys using suitable 

levels of protection and oversight (e.g., AES key wrapping [7] combined with M-of-N secret 

 
4  Recall that the sector seed allows us to compute any of the sector’s OTS private keys, which allows us to 

compute the corresponding OTS private keys and LMS leaf nodes within the sector. Given those values we can 
compute any of the node values within the sector, allowing us to ascend to the sector root node. Finally, we use 
the off-path information we saved during key generation to allow us to ascend to the root of the LMS tree, 
thereby completing the sectorized signature generation process. This is illustrated in Figure 5. 



  C4A-210-0002-20052020 

 

sharing to shard the wrapping key5), while destroying any materials within the device used to 

generate those sector private keys in order to ensure only a single copy exists of each. These 

sector keys can then be distributed as per the functional and procedural requirements of the 

application to ensure the appropriate levels of performance and survivability can be achieved 

(e.g., we may have multiple parallel HBS signing instances created to satisfy high performance 

requirements, or have geographically distinct instances to allow for improved survivability). 

Similarly, we may want to dole out the exported private keys to multiple devices over time to 

support very long-lived keys (longevity of the key) that would normally outlive the HSM devices 

into which we would be importing them. 

Care still needs to be taken to ensure the sector keys are only ever loaded into a single device 

(e.g., instituting a security policy that sees the physical media containing the exported sector key 

is destroyed after a single use/load), but that is far simpler than trying to ensure multiple copies 

of the same state are always coherent and up-to-date. Assuming there is no load replication, then 

devices with different sectors loaded into them are guaranteed to never re-use the same state, 

allowing for seamless operation during DR scenarios and recoveries. Furthermore, if a failed 

device is ultimately able to be brought back online then, since it was the only device loaded with 

its sector information, it can safely resume generating signatures without any worries about state 

re-use6. Figure 6 and Figure 7 depict simple 4-sector, and more generic N-sector, scenarios 

respectively to help illustrate the use of sectorization in HBS applications. 

 
5  Note that this is a standard private key export mechanism used extensively within today’s PKI installations to 

provide DR, so we are simply leveraging today’s best practices to bring a similar level of protection to HBS key 
management. 

6  Assuming of course it was well-behaved and managing its own internal state appropriately, which is an absolute 
necessity in all cases so we think this is a very reasonable assumption. 
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Figure 6. 4-sector example HBS scenario 
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• HSMA begins generating signatures from sector 0.
• If performance demands, HSMB can be brought online to 

double the signature generation capability by generating 
signatures from sector 1 in parallel with HSMA.

• If at some point HSMA and/or HSMB go down then backup 
devices HSMC and/or HSMD can be brought online to generate 
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• Root HSM generates N sector HBS, wraps each 
generated sector sectori with wrapping key wrapi, and 
exports them via approved means for storage in an 
approved container (e.g., a safe in this example).

• Root HSM then destroys all materials related to sector 
generation (i.e., exporting of a sector is a one-time 
operation).

• Sector keys imported into destination HSMs via reconstitution of 
corresponding wrapping key on the destination HSM, and then 
readied to generate signatures.

• Any external media used to convey the sector data (e.g., CD-
ROM, USB key, etc.) is destroyed to eliminate potential re-
loading and/or duplication (i.e., importation of a given sector is a 
one-time operation).

• HSMi begins generating signatures from sector 0.
• If performance demands, HSMj (and others) can be brought 

online to increase the signature generation capability by 
generating signatures from other sectors in parallel with 
HSMi.

• If at some point HSMi and/or HSMj go down then backup device 
HSMm (and others) can be brought online to generate signatures 
from new sectors (e.g., sector n) in order to shoulder the load of 
the missing HSM(s).

• If HSMi and/or HSMj recover then HSMm could be taken offline 
again

• Or HSMi and/or HSMj could remain offline and become the 
backup device(s) to HSMm.

• Any of the HSMs can be loaded with additional sectors if they 
find themselves running out of signature capacity over time (or 
they may have been pre-loaded with these additional sectors 
during configuration).

• All HSMs are generating signatures that verify back to hbsPubKey 
so they are all part of the same signing authority.
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Figure 7. Generic N-sector example HBS scenario 

Sectorization does introduce an additional level of complexity in the initial key generation process 

as we need to estimate the amount of longevity/survivability and redundancy we think is 

required. This will require the user to define their performance/resilience requirements, which 

should be well known and understood as part of their system planning and lifecycle management 

efforts. In addition, schemes such as LMS-HBS are able to tune each level of the HBS hypertree 

to deliver an optimal trade-off in terms of the number of sectors, key generation time, number 

of possible signatures, and signature size. So, we should be able to define an optimal 

configuration to meet our quantum safe signature generation needs. 

It also merits stating that the sectorization concept is basically an instantiation of the reservation 

concept described in Section 5 of [8], where we use cryptographic isolation between the 

reservations such that each reservation’s private key information cannot be derived from 

another reservation’s private key information, thereby preventing it from generating a HBS from 

a different reservation. 

Lastly, it should be noted that sectorization is essentially a vertical slicing of the tree made up by 

an HBS scheme, be it a single level LMS/XMSS or a multi-level HSS/XMSSMT structure. In either 

case we are taking the bottom-most leaf nodes and grouping them together into contiguous 

regions (a.k.a., sectors), and distributing each group to an individual HSM such that this HSM can 

generate all HBS within a single sector. This is illustrated by the image of the tree shown in the 
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top-right of Figure 6 where each coloured portion of the tree is allocated to a different HSM. Note 

as well that the sectorization is only done at the top-most subtree in the case of XMSSMT/HSS7. 
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7  Nothing precludes you from sectorizing additional levels of the tree, but we think the vast majority of interesting 

use cases can be satisfied by a simple single-layer sectorization of the top-most subtree. Hence, we chose to 
exercise the time-honoured KISS principle for the purposes of this introductory whitepaper. 

Speeding up key generation 

Earlier on we had identified the key generation time as being a potential drawback of HBS. The introduction of 

hypertree-based variants such as HSS/XMSSMT help address this issue by only requiring us to compute the public-keys 

and node values for subtrees along the path from the current signature state (i.e., bottom-level leaf node) up to the 

hypertree’s root. In a sectorized implementation we can simplify this further to have the initial sector generation only 

compute the top-level public key, sector seed, and additional off-path information (which is computed from the 

sector seed information). This information together constitutes all of the information required for a device to 

compute the rest of the HBS information, which can be done as part of a readying operation when the sector 

generation information is imported into its destination device. Hence, the device generating all of the initial sector 

information (i.e., SectorInfoi in Figure 5) should be able to do so quite quickly assuming reasonable parameter 

choices. As an added bonus, the amount of exported information is minimized by this approach, making it easier to 

store and transport as well. 
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