

WHITE PAPER

Sectorization
Addressing HBS’ Shortcomings

 C4A-210-0002-20052020

Introduction
This whitepaper introduces the basic ideas behind hash-based signatures (HBS), discusses their

suitability to use in a firmware- or code-signing application, and describes some of their

limitations in a real-world setting in regards to disaster recovery and survivability. All of this is in

preparation for the introduction of the proposed use of sectorization as a means of addressing

some of HBS’ shortcomings.

We’ve tried to keep things as simple as possible by simplifying our examples, deferring to other

excellent articles for additional details related to HBS, and choosing to limit descriptions to a

particular choice of HBS, but all of the concepts described herein are generic enough that they

can be applied to other, potentially more complex HBS instantiations. We’ve also added a

number of asides that attempt to provide a bit more detail regarding some aspects of the

discussion which will (hopefully!) assist the curious reader. In addition, we’re happy to address

any questions the reader may have via e-mail using the author’s address: jimg@crypto4a.com.

Hash Based Signature (HBS) 101
In 1979 Ralph Merkle submitted a Ph.D. dissertation [1] in which he described a means to

efficiently generate certified signatures using one-way hash functions as the underlying

mechanism. The basic idea had already been invented by Leslie Lamport, but that original

solution required a very large private AND public key be generated and published for EVERY

message that was to be signed. Merkle’s principal contribution to HBS was the Merkle tree which

provided an efficient means to bind together a large number of one-time signatures under a

single public key, which greatly improved the usability of HBS.

Merkle’s approach utilizes 2n one-time signature (OTS) instances whose public keys are hashed

together via a binary tree to generate a single public key that binds all of the OTS instances

together, thereby allowing you to generate 2n signatures from a single public key. This is then

combined with a pseudo-random method for generating the private keys of each of the OTS

signatures from a single reasonable-length secret seed value (e.g., 32 bytes), to yield a reasonably

compact public/private keypair, and a many-time signature (MTS) scheme. Signatures consist of

the OTS signature on the message, combined with the information necessary to re-compute the

public key which is the sequence of values required to climb the binary tree from the OTS instance

at the leaf of the tree, all the way up to the root of the tree (i.e., the public key). This is shown in

a greatly simplified fashion in Figure 1.

 C4A-210-0002-20052020

MTS (Merkle Tree)

OTS
Msg genSigOTS()privOTS(q = 16)

Ti = H(prefix || T2i || T2i+1)

T2i T2i+1

sigHBS = {q, sigOTS, path[0], path[h-1] }

T49, T25, T13, T7, T2

How to climb the tree:

sigOTS

T48 = F(sigOTS)
T24 = H(prefix || T48 || T49)
T12 = H(prefix || T24 || T25)
T6 = H(prefix || T12 || T13)
T3 = H(prefix || T6 || T7)
T1 = H(prefix || T2 || T3)

T41

T1 = pubLms

T17T16 T19T18 T21T20 T23T22 T25T24 T27T26 T29T28 T31T30

T8 T10 T12 T14T9 T11 T13 T15

T4 T6T5 T7

T2 T3

T32 T34 T35 T36 T37 T38 T39 T40 T42 T43 T44 T45 T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60 T61 T62 T63T33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31q:

Signature generation: Signature validation:

Figure 1. Greatly simplified HBS signing operation

Unfortunately, this introduces some constraints on practical implementations. One of these

constraints is related to performance. Computing the public key requires you to compute 2n

OTS public keys, and then combine those results via a n-level binary tree which requires you to

compute 2n – 1 node values. This can quickly prove prohibitively expensive as n increases.

Another important constraint is related to security. If you were ever to re-use an OTS instance

then you greatly increase the risk of having an adversary generate undetectable forgeries from

previously-generated signatures. Each instance corresponds to one of the 2n leaves of the

Merkle tree so we need to track which instances have been used already. We track this using a

monotonically increasing counter that counts up from 0 to 2n - 1, incrementing after each OTS is

generated. This count value (i.e., leaf number) is referred to as the state of the HBS, and its

management is absolutely crucial to ensuring the security of the HBS scheme.

Fast forward almost 40 years and HBS has evolved into a mature cryptographic mechanism that

utilizes optimized OTS schemes and innovative hierarchical hyper-tree structures to address the

computational complexity of computing signatures and HBS public keys in a timely fashion. As an

added bonus, HBS are considered to be safe from the threat posed by quantum computers, which

will completely undermine the security of traditional RSA/ECDSA-based certified signature

schemes. Hence, there is a lot of interest in HBS at this time for certain use cases that it is well

 C4A-210-0002-20052020

suited for (e.g., firmware signing). In addition, work has been done to create stateless HBS

schemes (e.g., SPHINCS [2] and its successor SPHINCS+ [3]) that employ a few-time signature

(FTS) scheme to provide resiliency against the state reuse problem, effectively rendering it a non-

issue, though at the cost of additional complexity and signature size. This whitepaper however is

focused only on the stateful variants.

For those readers who want to know more regarding HBS then I definitely recommend you check

out Adam Langley’s explanation of HBS from his online blog [4] as he does an excellent job filling

in the details in regards to what HBS is and how it is used. More curious (and brave!) readers can

even go so far as to review the two primary stateful HBS schemes’ informational RFCs ([5], [6])

which serve as the definitive references for these variants.

In the interest of simplicity, the remainder of this whitepaper will focus on the LMS-HBS method

defined in RFC 8554 [5], though everything discussed should be realizable using XMSS [6] as well.

The Winternitz One Time Signature (WOTS) Scheme
All HBS methods rely on the use of OTS schemes, and one particularly popular OTS is the

Winternitz OTS (WOTS) which is used in one form or another for both LMS-HBS [5] and XMSS [6].

At its heart, the WOTS scheme utilizes hash chains to compute a digital signature by chunking a

hash of a message (plus some additional information that we’re ignoring here for simplicity’s

sake) that is to be signed into u digits, each of length w bits (w = Winternitz parameter which is

essentially the radix of the encoding). Each of those digits (digiti) is then used to compute the

length of a hash chain using the formula leni = digiti, where each leni determines how many times

element xi of the WOTS private key is iteratively hashed to yield the WOTS signature element yi.

Note that the WOTS public key elements (zi) are computed using the same iterative hashing

approach with a fixed chain length of 2w – 1 (i.e., 𝑧𝑖 = 𝐻2𝑤−1(𝑥𝑖)) for all elements of the WOTS

private key. These zi are then concatenated and hashed together to yield the WOTS public key

value that is used in the WOTS signature verification. A simplified version of the calculation of

the WOTS public key is shown in Figure 2.

 C4A-210-0002-20052020

Figure 2. Simplified WOTS Public Key Generation

Unfortunately, this approach is prone to forgery in that given some yi, an attacker can easily

perform additional hash iterations to yield yi’ ≠ yi which appears valid, but maps to a different

leni, and hence digiti. WOTS mitigates this attack vector by computing a checksum across the u

digits using the formula:

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 = ∑ 2𝑤 − 1 − 𝑑𝑖𝑔𝑖𝑡𝑖

𝑢−1

𝑖=0

The checksum is then encoded as v additional radix-w digits that get signed as well, giving you p

= u + v digits in all that need to be encoded/signed. Hence, an attacker that performed additional

hash iterations would effectively be increasing the value of some digiti, which in turn would

reduce one or more checksum digits, thereby requiring them to generate a result from a hash

chain with less iterations. This is equivalent to them being able to find a pre-image of a

cryptographically secure hash function (e.g., SHA256) which is thought to be computationally

infeasible at this time. A simplified version of the calculation of the WOTS signature is shown in

Figure 3.

Simplified WOTS Public Key Generation

x[1]x[0] . . . x[p-1]WOTS Private Key:

It
e

ra
te

d
 H

as
h

It
e

ra
te

d
 H

as
h

It
e

ra
te

d
 H

as
h

...

0

1
tmp1 = H(tmp0)

tmp2 = H(tmp1)

tmp0 = x[i]

z[p-1]z[0] z[1] . . .WOTS Public Key:

. . .

p × n-byte WOTS public key

p × n-byte WOTS private key

tmp2w-2 = H(tmp2w-3)

tmp2w-1 = H(tmp2w-2)
2w- 1

z[i] = tmp2w-1

2w- 2

H(z z[p-1])

Concatenated hash for public key
value derivation

WOTS
Public Key
Value

 C4A-210-0002-20052020

Figure 3. Simplified WOTS Signature Generation

Verification of a WOTS scheme repeats the checksum computation and encoding of the resulting

concatenated message hash and checksum into p = u + v digits (digiti). However, these digits are

now used to complete the hash chains by performing leni = 2w – 1 – digiti iterations on the 𝑦̂𝑖

values found in the WOTS signature (the hat character represents the fact the values may differ

from the values computed during signature generation). If the digiti values are the same as those

used during the signing process, then you are essentially re-computing the public key

components zi as:

𝐻2𝑤−1−𝑑𝑖𝑔𝑖𝑡𝑖(𝑦𝑖) = 𝐻2𝑤−1−𝑑𝑖𝑔𝑖𝑡𝑖 (𝐻𝑑𝑖𝑔𝑖𝑡𝑖 (𝑥𝑖)) = 𝐻2𝑤−1(𝑥𝑖) = 𝑧𝑖

If digiti has been modified in some way then 𝑦̂𝑖 ≠ 𝑦𝑖 and you will be computing the 𝑧̂𝑖 ≠ 𝑧𝑖,

leading to a different concatenated hash value, and a simple comparison to the WOTS public key

Simplified WOTS Signature Generation

x[1]x[0] . . . x[p-1]WOTS Private Key:
It

e
ra

te
d

 H
as

h

It
e

ra
te

d
 H

as
h

It
e

ra
te

d
 H

as
h

...

0

1
tmp1 = H(tmp0)

tmp2 = H(tmp1)

tmpa[i]-1 = H(tmpa[i]-2)

tmpa[i] = H(tmpa[i]-1)
a[i]

y[i] = tmpa[i]

tmp0 = x[i]

a[i]-1

y[p-1]y[0] y[1] . . .WOTS Signature:

a[p-1]

a[1]

a[0]

. .

Message (M) Chksum = (2w- 1 - b[i])

C

b[1] b[u-1]. . .b[0] c[0] . . . c[v-1]

a[p-1]a[0] a[1] a[u-1] a[u]A = B || C:

B

w bits

u digits

p = u + v digits

H(M)

v digits

p × n-byte hash results

p × n-byte WOTS private key

(WOTS signature)

w bits

 C4A-210-0002-20052020

value will reveal the discrepancy so that you can reject the signature. A simplified version of the

calculation of the WOTS signature is shown in Figure 4.

Figure 4. Simplified WOTS Signature Verification

Suitable Use Cases
HBS isn’t a panacea. It has a number of limitations that make it ill-suited to use as a generic digital

signature mechanism that can be a drop-in replacement for today’s RSA- and ECDSA-based digital

signature mechanisms. First and foremost is the stateful nature of HBS, which we have already

touched on in our brief introduction to HBS, and which we will discuss further shortly when we

look at the difficulties addressing real world requirements such as Disaster Recovery (DR).

Another big constraint on HBS is the fact we need to know how many signatures will be required

at the time of key generation, which may be impossible to do. Estimating conservatively (i.e.,

over-estimating to be safe) leads to increased signature sizes for a mechanism that already has

relatively large signatures. Hence, care must be taken to identify appropriate use cases where

HBS makes sense.

Simplified WOTS Signature Verification

It
e

ra
te

d
 H

as
h

It
e

ra
te

d
 H

as
h

It
e

ra
te

d
 H

as
h

...

a[i]

a[i]+1
tmpa[i]+1 = H(tmpa[i])

tmpa[i]+2 = H(tmpa[i]+1)

tmp2w-2 = H(tmp2w-3)

tmp2w-1 = H(tmp2w-2)
2w- 1

z[i] = tmp2w-1

tmpa[i] = y[i]

2w- 2

z[p-1]z[0] z[1] . . .

2w- 1 - a[p-1]

. .

. . .y[0] y[p-1]y[1] . . .

2w- 1 - a[1]

2w- 1 - a[0]

a[i]+2

H(z z[p-1])

WOTS Signature:

=
?

Kpub-WOTS

Pass/Fail

Message (M)
Hashing and
Checksum
Calculation

{a[0], a[1], a[p-1]}

p × n-byte WOTS signature

n-byte WOTS public key value

Concatenated hash
for public key value

derivation

 C4A-210-0002-20052020

One such use case is firmware signing where we can

(relatively) accurately predict the total number of

signatures required based on the expected update

schedule and lifetime of the firmware we’re trying to

protect, and for which a few kB’s of signature are

insignificant compared to the MB of firmware we’re

attaching the signature to. In addition, the quantum

safe nature of HBS ensures that when you want to

update your devices’ firmware to include new

features/functions (e.g., in response to NIST’s

designation of quantum-safe signature mechanisms

in the 2021-2022 timeframes), it can be done so in a

safe and secure way, even in the presence of

adversaries in possession of a quantum computer,

which addresses the bootstrapping problem present

on many companies’ plans to firmware update their

way out of the quantum computing dilemma.

Another such use case are extremely long-lived root

keys where we need to be able to generate

signatures over 20+ year lifetimes, albeit on a

relatively infrequent basis that can be reasonably

estimated to ensure we can generate a suitable HBS

tree structure.

Durability Protection and

Disaster Recovery
Real-world systems require the ability to deal with

unexpected events that effectively remove devices

from operation, rendering its resources and services

unavailable. Sometimes these events lead to

temporary outages (e.g., local power outage or

network failure), and sometimes they lead to more

permanent outages (e.g., a fire destroys the device,

or the device simply permanently fails). Typically, a

PKI provider will maintain a backup device, which

contains the same private keys as the primary device, in a geographically distinct location to

provide survivability to localized failures such as network/power outages. When the primary

device goes down the backup device can be brought online to fill in until (if!) the primary device

The bootstrapping dilemma

A number of companies claim that they will

just utilize their built-in firmware update

procedure to introduce quantum-safe

cryptographic primitives if and when they are

standardized, and when they become

necessary (i.e., when quantum-based attacks

become a reality). Setting aside the record-

and-decrypt-later aspect of things, and

focusing just on the authentication aspect,

this introduces some troubling issues. First,

how will we know that a quantum-based

attack is possible? Given the expected

capabilities of a quantum-enabled adversary,

and the level of resources required to develop

that capability, it is very likely its existence will

never be avowed until well after it is

achieved, much like the Allies’ development

of ULTRA during the Second World War,

which didn’t come to light until more than 30

years later. Hence, we will never likely know

the precise timing of that event, so all

firmware update contingencies based on non-

quantum safe authentication mechanisms are

at risk, with that risk increasing the longer

people choose to delay the switchover to

quantum safe mechanisms. And once that

capability is known to exist, its already too

late. Any attempted firmware update from

that moment onwards cannot be trusted as it

may have been modified to introduce

mechanisms to subvert any post-update

authentication mechanisms since the

update’s integrity can’t be guaranteed. So, in

our opinion its best to act now to introduce

proven, quantum-safe authentication

mechanisms into the firmware update

process as soon as possible, especially since

well-suited options such as HBS already exist,

and are standardized sufficiently for vendors

to develop proprietary update mechanisms

that don’t require interoperability.

 C4A-210-0002-20052020

can be restored/repaired. The goal is to do this in a manner that minimizes the downtime and

impact on users.

HBS throws a wrench in the works of traditional DR mechanisms as the HBS private keys are

stateful, which means they are modified during each usage so any backup device’s copy of the

private key needs to maintain coherency with the primary device’s private key so that it NEVER

re-uses a prior private key state. If we can’t guarantee that behavior due to even a brief lack of

synchronization, then the entire system is at risk of being compromised as attackers may have

enough information to successfully forge messages! Indeed, even a single reuse can render the

system compromised.

Needless to say, this is a very difficult problem to mitigate using standard HBS mechanisms and

techniques, which is why we’re proposing the sectorization concept as a means of effectively

dealing with the limitations of stateful HBS in a DR-based scenario.

Introducing Sectorization
Sectorization is a means to partition the 2n signatures generated by an HBS into 2S

cryptographically-isolated segments1 (each capable of generating 2n-S signatures) such that a

device assigned sector i’s private key cannot generate valid signatures for sector j, and vice-versa,

provided i ≠ j. Note that both sector’s utilize the same public key, so they are all part of the same

signing authority, and in the hierarchical XMSSMT/HSS variants, they will share the same top-level

tree identifiers too. This isolation is provided by using a more elaborate key generation

mechanism that knows a priori how many sectors are to be generated, and then proceeds to

generate unique sector seed2 values for each of the sectors using either an approved pseudo-

random generation method from a master seed value that mixes in the unique sector numbers,

or by generating unique random sector seed values. In either case, the sector seed becomes the

seed of the sector’s top-level tree3 , and the same top-level tree identifier is used for all sectors.

Once that is done, it’s a simple matter to use each sector’s seed to generate that sector’s OTS

private keys and public keys, and then combine those public key values together to ascend the

top-level tree and generate the HBS public key.

Where the sectorized approach differs from a conventional HBS is that we need to augment the

private key to include the off-path information that will allow a verifier to ascend the tree from

the root of their sector up to the root of the tree (i.e., HBS public key). This amounts to storing S

1 Note that we are restricting ourselves to power-of-two sector counts that fit within the range of the top-level

tree in order to simplify the explanation/discussion. There is no fundamental limitation on the total sector count,
though a power of two greatly simplifies the implementation, as does ensuring the sectorization splitting all falls
within the top-level tree. Examples where this is not the case are left as exercises for the reader! :->

2 Recall that seeds are used in the pseudo-random OTS private key value generation process such as that proposed
in Appendix A of [5]. However, here we are using a unique seed per sector, potentially leading to multiple seeds
per LMS tree, but this shouldn’t adversely affect the security of the scheme.

3 Here we’re referring to a hypertree-based hierarchical scheme made up of multiple levels of trees, it is trivial to
map this onto the non-hierarchical case.

 C4A-210-0002-20052020

node values in our 2S sector-based example. At this point the private key is complete and we can

generate any HBS from within that sector4. If someone were to attempt to use a sector’s private

key to generate a valid signature for another sector then they would not have the information

they need to compute the required path information above the sector root since that was never

recorded in their private key. In addition, the cryptographically-isolated sector seed values

ensure they can’t feasibly guess the required seed value they’d need to be able to compute

another sector’s root value by recomputing its leave’s OTS private key values. This is all

summarized in the simple sectorization example shown in Figure 5.

seed0,0

2h - S 2h - S 2h - S 2h - S

I0

seed0,1

I0

seed0,2

I0

seed0,3

I0

h

h – S

S = log2(numSectors) = 2

T1 = pubLms

T2 T3

T4 T5 T6 T7

Off-path info we need to store in sector s private key (SectorInfoi):

Sector 0: {T5, T3} so SectorInfo0 = {h, S, pubLms, I0, seed0,0, T5, T3}
Sector 1: {T4, T3} so SectorInfo1 = {h, S, pubLms, I0, seed0,1, T4, T3}
Sector 2: {T7, T2} so SectorInfo2 = {h, S, pubLms, I0, seed0,2, T7, T2}
Sector 3: {T6, T2} so SectorInfo3 = {h, S, pubLms, I0, seed0,3, T6, T2}

Pseudo-random seed/I generation:

seed0,0 = H(u128(0) || u32(0) || u16(D_TOPSEED) || u8(1) || masterSeed)
seed0,1 = H(u128(0) || u32(1) || u16(D_TOPSEED) || u8(1) || masterSeed)
seed0,2 = H(u128(0) || u32(2) || u16(D_TOPSEED) || u8(1) || masterSeed)
seed0,3 = H(u128(0) || u32(3) || u16(D_TOPSEED) || u8(1) || masterSeed)

 I0 = H(u128(0) || u32(0) || u16(D_TOPSEED) || u8(2) || masterSeed)

Sector 0 Sector 1 Sector 2 Sector 3

Figure 5. Simple Sectorization

What this allows us to do is confidently generate a new multi-sector HBS scheme in a suitable

hardware device (e.g., HSM), and then export the resulting sector private keys using suitable

levels of protection and oversight (e.g., AES key wrapping [7] combined with M-of-N secret

4 Recall that the sector seed allows us to compute any of the sector’s OTS private keys, which allows us to

compute the corresponding OTS private keys and LMS leaf nodes within the sector. Given those values we can
compute any of the node values within the sector, allowing us to ascend to the sector root node. Finally, we use
the off-path information we saved during key generation to allow us to ascend to the root of the LMS tree,
thereby completing the sectorized signature generation process. This is illustrated in Figure 5.

 C4A-210-0002-20052020

sharing to shard the wrapping key5), while destroying any materials within the device used to

generate those sector private keys in order to ensure only a single copy exists of each. These

sector keys can then be distributed as per the functional and procedural requirements of the

application to ensure the appropriate levels of performance and survivability can be achieved

(e.g., we may have multiple parallel HBS signing instances created to satisfy high performance

requirements, or have geographically distinct instances to allow for improved survivability).

Similarly, we may want to dole out the exported private keys to multiple devices over time to

support very long-lived keys (longevity of the key) that would normally outlive the HSM devices

into which we would be importing them.

Care still needs to be taken to ensure the sector keys are only ever loaded into a single device

(e.g., instituting a security policy that sees the physical media containing the exported sector key

is destroyed after a single use/load), but that is far simpler than trying to ensure multiple copies

of the same state are always coherent and up-to-date. Assuming there is no load replication, then

devices with different sectors loaded into them are guaranteed to never re-use the same state,

allowing for seamless operation during DR scenarios and recoveries. Furthermore, if a failed

device is ultimately able to be brought back online then, since it was the only device loaded with

its sector information, it can safely resume generating signatures without any worries about state

re-use6. Figure 6 and Figure 7 depict simple 4-sector, and more generic N-sector, scenarios

respectively to help illustrate the use of sectorization in HBS applications.

5 Note that this is a standard private key export mechanism used extensively within today’s PKI installations to

provide DR, so we are simply leveraging today’s best practices to bring a similar level of protection to HBS key
management.

6 Assuming of course it was well-behaved and managing its own internal state appropriately, which is an absolute
necessity in all cases so we think this is a very reasonable assumption.

 C4A-210-0002-20052020

Figure 6. 4-sector example HBS scenario

Location 2

Location 1HSMROOT

HSMA

HSMB

HSMD

sector0

sector1

sector3

• Root HSM generates 4 sector HBS and wraps each sector generated with
one of the wrapping keys for HSMA – HSMD, and exports them via
approved means.

• Root HSM then destroys all materials related to sector generation (i.e.,
exporting of a sector is a one-time operation).

HSMC

sector2

sector3

wrapA

sector2

sector1

sector0

wrapB

wrapC

wrapD

• Sector keys loaded up into destination HSMs and readied to generate signatures.
• Any external media used to convey the sector data (e.g., CD-ROM, USB key, etc.) is

destroyed to eliminate potential re-loading and/or duplication (i.e., importation of a
given sector is a one-time operation).

• HSMA begins generating signatures from sector 0.
• If performance demands, HSMB can be brought online to

double the signature generation capability by generating
signatures from sector 1 in parallel with HSMA.

• If at some point HSMA and/or HSMB go down then backup
devices HSMC and/or HSMD can be brought online to generate
signatures from sectors 2 and 3 respectively in order to shoulder
the load of the missing HSM(s).

• If HSMA and/or HSMB recover then HSMC and/or HSMD could be
taken offline again

• Or HSMA and HSMB could remain offline and become the
backup devices to HSMC and HSMD.

• All HSMs are generating signatures that verify back to hbsPubKey
so they are all part of the same signing authority.

hbsPubKey

sector0 sector1 sector3sector2

 C4A-210-0002-20052020

• Root HSM generates N sector HBS, wraps each
generated sector sectori with wrapping key wrapi, and
exports them via approved means for storage in an
approved container (e.g., a safe in this example).

• Root HSM then destroys all materials related to sector
generation (i.e., exporting of a sector is a one-time
operation).

• Sector keys imported into destination HSMs via reconstitution of
corresponding wrapping key on the destination HSM, and then
readied to generate signatures.

• Any external media used to convey the sector data (e.g., CD-
ROM, USB key, etc.) is destroyed to eliminate potential re-
loading and/or duplication (i.e., importation of a given sector is a
one-time operation).

• HSMi begins generating signatures from sector 0.
• If performance demands, HSMj (and others) can be brought

online to increase the signature generation capability by
generating signatures from other sectors in parallel with
HSMi.

• If at some point HSMi and/or HSMj go down then backup device
HSMm (and others) can be brought online to generate signatures
from new sectors (e.g., sector n) in order to shoulder the load of
the missing HSM(s).

• If HSMi and/or HSMj recover then HSMm could be taken offline
again

• Or HSMi and/or HSMj could remain offline and become the
backup device(s) to HSMm.

• Any of the HSMs can be loaded with additional sectors if they
find themselves running out of signature capacity over time (or
they may have been pre-loaded with these additional sectors
during configuration).

• All HSMs are generating signatures that verify back to hbsPubKey
so they are all part of the same signing authority.

Location A

HSMi

sector0

sectori

wrapN

sectorN

HSMROOT

Location B

HSMm

sectorn
. . .

wrapn

sectorn

wrapk

sectork

wrap0

sector0

HSMj

sectork

Figure 7. Generic N-sector example HBS scenario

Sectorization does introduce an additional level of complexity in the initial key generation process

as we need to estimate the amount of longevity/survivability and redundancy we think is

required. This will require the user to define their performance/resilience requirements, which

should be well known and understood as part of their system planning and lifecycle management

efforts. In addition, schemes such as LMS-HBS are able to tune each level of the HBS hypertree

to deliver an optimal trade-off in terms of the number of sectors, key generation time, number

of possible signatures, and signature size. So, we should be able to define an optimal

configuration to meet our quantum safe signature generation needs.

It also merits stating that the sectorization concept is basically an instantiation of the reservation

concept described in Section 5 of [8], where we use cryptographic isolation between the

reservations such that each reservation’s private key information cannot be derived from

another reservation’s private key information, thereby preventing it from generating a HBS from

a different reservation.

Lastly, it should be noted that sectorization is essentially a vertical slicing of the tree made up by

an HBS scheme, be it a single level LMS/XMSS or a multi-level HSS/XMSSMT structure. In either

case we are taking the bottom-most leaf nodes and grouping them together into contiguous

regions (a.k.a., sectors), and distributing each group to an individual HSM such that this HSM can

generate all HBS within a single sector. This is illustrated by the image of the tree shown in the

 C4A-210-0002-20052020

top-right of Figure 6 where each coloured portion of the tree is allocated to a different HSM. Note

as well that the sectorization is only done at the top-most subtree in the case of XMSSMT/HSS7.

References

1. Merkle, Ralph. Secrecy, Authentication, and Public Key Systems. Stanford : Stanford

University, 1979.

2. SPHINCS: practical stateless hash-based signatures. Bernstein, Daniel, et al. 2015.

3. The SPHINCS+ Signature Framework. Berstein, Daniel, et al. 2019.

4. Langley, Adam. Hash based signatures. ImperialViolet. [Online] July 18, 2013.

https://www.imperialviolet.org/2013/07/18/hashsig.html.

5. Leighton-Micali Hash-Based Signatures. McGrew, David, Curcio, Michael and Fluhrer, Scott.

s.l. : IETF, 2019, RFC8554.

6. XMSS: eXtended Merkle Signature Scheme. Hulsing, Andreas, et al. s.l. : IETF, 2018, RFC8391.

7. Recommendation for Block Cipher Modes of Operation: Methods of Key Wrapping. Dworkin,

Morris. s.l. : NIST, 2012. SP800-38F.

8. State Management for Hash-Based Signatures. McGrew, David, et al. s.l. : Springer, 2016,

Lecture Notes in Computer Science (Security Standardisation Research), Vol. 10074, pp. 224-

260.

7 Nothing precludes you from sectorizing additional levels of the tree, but we think the vast majority of interesting

use cases can be satisfied by a simple single-layer sectorization of the top-most subtree. Hence, we chose to
exercise the time-honoured KISS principle for the purposes of this introductory whitepaper.

Speeding up key generation

Earlier on we had identified the key generation time as being a potential drawback of HBS. The introduction of

hypertree-based variants such as HSS/XMSSMT help address this issue by only requiring us to compute the public-keys

and node values for subtrees along the path from the current signature state (i.e., bottom-level leaf node) up to the

hypertree’s root. In a sectorized implementation we can simplify this further to have the initial sector generation only

compute the top-level public key, sector seed, and additional off-path information (which is computed from the

sector seed information). This information together constitutes all of the information required for a device to

compute the rest of the HBS information, which can be done as part of a readying operation when the sector

generation information is imported into its destination device. Hence, the device generating all of the initial sector

information (i.e., SectorInfoi in Figure 5) should be able to do so quite quickly assuming reasonable parameter

choices. As an added bonus, the amount of exported information is minimized by this approach, making it easier to

store and transport as well.

For more information visit:

www.crypto4a.com

C4A-210-002-18052020

	Introduction
	Hash Based Signature (HBS) 101
	The Winternitz One Time Signature (WOTS) Scheme
	Suitable Use Cases
	Durability Protection and Disaster Recovery
	Introducing Sectorization
	References

